Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Tensor[MultiVector] - compute the alternating sum of the tensor product of a list of vector fields
Calling Sequences
MultiVector(V)
Parameters
V - a list of vector fields
Description
The bi-vector defined by vector fields X and Y is the rank 2, skew-symmetric, contravariant tensor field T = X &t Y - Y &t X. More generally, the multi-vector defined by vector fields X_1, X_2, ..., X_r is the rank r, skew-symmetric contravariant tensor field defined as the alternating sum of the tensor products of X_1, X_2, ..., X_r.
The vector fields X_1, X_2, ..., X_r are linearly dependent if and only if the associated multi-vector vanishes.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form MultiVector(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-MultiVector.
Examples
Example 1.
First create a 4 dimensional manifold M.
Calculate the bi-vector of the two vector fields X1 and X2.
Example 2.
Calculate the tri-vector of the three vector fields Y1, Y2 and Y3.
Example 3.
Use the MultiVector command to determine when a vector field Z lies in the span of the vector fields Y1, Y2, Y3.
So Z is a linear combination of Y1, Y2, Y3 precisely when a + b + c + d = 0.
See Also
DifferentialGeometry, Tensor, SymmetrizeIndices, DGinfo
Download Help Document