Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Tensor[CottonTensor] - calculate the Cotton tensor for a metric
Calling Sequences
CottonTensor(g, C, R)
Parameters
g - a metric tensor on the tangent bundle of a 3 dimensional manifold
C - (optional) the Christoffel connection for the metric g
R - (optional) the curvature tensor of the metric g
Description
Let R_{hl} be the Ricci tensor for the metric g. The Cotton tensor is defined in components by C^{ij} = e^{ihk} g^{jl} nabla_k R_{hl} (symmetrize on i, j). Here e^{ihk} denotes the contravariant permutation symbol and nabla_k R_{hl} is the covariant derivative of the Ricci tensor with respect to the Christoffel connection.
The Cotton tensor is symmetric, trace-free, divergence-free and a relative conformally invariant of the metric.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form CottonTensor(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-CottonTensor.
Examples
Example 1.
First create a 3 dimensional manifold M and define a metric on the tangent space of M.
Check that the Cotton tensor CotTen1 is trace-free.
Check that the Cotton tensor is divergence-free.
Check that the Cotton tensor is a relative conformal invariant on the metric.
See Also
DifferentialGeometry, Tensor, Christoffel, CovariantDerivative, CurvatureTensor, ParallelTransportEquations, WeylTensor
Download Help Document