Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
numapprox[remez] - Remez algorithm for minimax rational approximation
Calling Sequence
remez(w, f, a, b, m, n, crit, 'maxerror')
Parameters
w
-
procedure representing a weight function w(x) > 0 on [a, b]
f
procedure representing the function f(x) to be approximated
a, b
numeric values specifying the interval [a, b]
m
integer specifying the desired degree of the numerator
n
integer specifying the desired degree of the denominator
crit
Array indexed containing an initial estimate of the critical set (i.e. the points of max/min of the error curve)
maxerror
name which will be assigned the minimax norm of
Description
This is not usually invoked as a user-level routine. See numapprox[minimax] for the standard user interface to the Remez algorithm.
This procedure computes the best minimax rational approximation of degree for a given real function f(x) on the interval [a, b] with respect to the positive weight function w(x).
Specifically, it computes the rational expression r(x) such that
(1)
is minimized over all rational expressions with numerator of degree m and denominator of degree n.
The value returned is an operator r such that is the desired approximation as a quotient of polynomials in Horner (nested multiplication) form.
Note that if f(x) is nonzero on the interval of approximation then the relative error will be minimized by specifying the weight function .
If then the best minimax polynomial approximation of degree m is computed.
The last argument 'maxerror' must be a name and upon return, its value will be an estimate of the minimax norm specified by equation (1) above.
Various levels of user information will be displayed during the computation if infolevel[remez] is assigned values between 1 and 3.
The command with(numapprox,remez) allows the use of the abbreviated form of this command.
Examples
w := proc(x) 1.0 end proc:
f := proc(x) evalf(exp(x)) end proc:
g := proc(x) if x=0 then 1.0 else evalf(tan(x)/x) end if end proc:
See Also
numapprox[minimax]
Download Help Document