Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
numapprox[hornerform] - convert a polynomial to Horner form
Calling Sequence
hornerform(r)
hornerform(r, x)
Parameters
r
-
procedure or expression representing a polynomial or rational function
x
(optional) variable name appearing in r, if r is an expression
Description
This procedure converts a given polynomial r into Horner form, also known as nested multiplication form. This is a form which minimizes the number of arithmetic operations required to evaluate the polynomial.
If r is a rational function (i.e. a quotient of polynomials) then the numerator and denominator are each converted into Horner form.
If the second argument x is present then the first argument must be a polynomial (or rational expression) in the variable x. If the second argument is omitted then either r is an operator such that yields a polynomial (or rational expression) in y, or else r is an expression with exactly one indeterminate (determined via indets).
Note that for the purpose of evaluating a polynomial efficiently, the Horner form minimizes the number of arithmetic operations for a general polynomial. Specifically, the cost of evaluating a polynomial of degree n in Horner form is: n multiplications and n additions.
The command with(numapprox,hornerform) allows the use of the abbreviated form of this command.
Examples
See Also
convert[horner], numapprox[confracform]
Download Help Document