Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
numapprox[chebpade] - compute a Chebyshev-Pade approximation
Calling Sequence
chebpade(f, x=a..b, [m, n])
chebpade(f, x, [m, n])
chebpade(f, a..b, [m, n])
Parameters
f
-
procedure or expression representing the function to be approximated
x
the variable appearing in f, if f is an expression
a, b
numerical values specifying the interval of approximation
m, n
desired degree of numerator and denominator, respectively
Description
The function chebpade computes a Chebyshev-Pade approximation of degree for the function f.
Specifically, f is expanded in a Chebyshev series on the interval (if is not specified then the interval is understood), and then the Chebyshev-Pade rational approximation is computed.
If or if the third argument is simply an integer m then the Chebyshev series of degree m is computed.
The Chebyshev-Pade approximation is defined to be the rational function with and such that the Chebyshev series expansion of has maximal initial agreement with the Chebyshev series expansion of f. In normal cases, the series expansion agrees through the term of degree .
If the second argument is a range then the first argument is understood to be a Maple operator, and the result will be returned as an operator. If the second argument is an equation , or a name x, then the first argument is understood to be an expression in the variable x, and the result will be returned as an expression. In all cases, the numerator and denominator will be expressed in terms of the Chebyshev polynomials . See orthopoly[T].
The method used is based on transforming the Chebyshev series to a power series with the same coefficients, computing a Pade approximation for the power series, and then converting back to the appropriate Chebyshev-Pade approximation.
Note that for the purpose of evaluating a rational function efficiently (i.e. minimizing the number of arithmetic operations), the rational function should be converted to a continued-fraction form. See numapprox[confracform].
Various levels of user information will be displayed during the computation if infolevel[chebpade] is assigned values between 1 and 3.
The command with(numapprox,chebpade) allows the use of the abbreviated form of this command.
Examples
Check agreement of the Chebyshev series to 7 digits of accuracy.
See Also
convert/ratpoly, numapprox[chebyshev], numapprox[confracform], numapprox[minimax], orthopoly[T]
References
Geddes, K.O. "Block Structure in the Chebyshev-Pade Table." SIAM J. Numer. Anal., Vol. 18(5). (Oct. 1981): 844-861.
Download Help Document