Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Calculus 1: Integration
The Student[Calculus1] package contains two routines that can be used to both work with and visualize the concepts of approximating integrals and antiderivatives. This worksheet demonstrates this functionality.
For further information about any command in the Calculus1 package, see the corresponding help page. For a general overview, see Calculus1.
Getting Started
While any command in the package can be referred to using the long form, for example, Student[Calculus1][ApproximateInt], it is easier, and often clearer, to load the package, and then use the short form command names.
The following sections show how the routines work.
Approximating an Integral
The methods of approximating an integral are divided into two categories:
1. Riemann sums, and
2. Newton-Cotes methods.
Riemann sums approximate an integral by summing the areas of adjacent rectangles, where the height of the rectangle depends on the value of function in that interval.
Newton-Cotes methods assume knowledge of integration of polynomials. These methods interpolate the function on each subinterval, and integrate this interpolating polynomial. The trapezoid rule approximates integrals using linear functions. Simpson's rule uses quadratic functions to approximate the expression.
In every case, an animation, in which each frame shows a refinement of the previous partition, can be returned.
An interesting variation begins with a random partition, and at each step, chooses a refinement that randomly divides the largest subinterval.
When using this method with a partition, note how the total area appears to converge to a value and then jumps to another.
You can also compute and visualize approximate integrals using the ApproximateIntTutor tutor.
Antiderivatives
Given a function , an antiderivative of is any function such that . By this definition, if is an antiderivative of , so is for any constant . The routine AntiderivativePlot can plot a single antiderivative or a class of antiderivatives.
You can also learn about antiderivative plots using the AntiderivativeTutor command.
Main: Visualization
Previous: Applications of Derivatives
Next: Applications of Integration
Download Help Document