Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
RegularChains[ChainTools][SquarefreeFactorization] - compute a squarefree decomposition of a polynomial modulo a regular chain
Calling Sequence
SquarefreeFactorization(p, v, rc, R)
SquarefreeFactorization(p, v, rc, R,options)
Parameters
p
-
polynomial
v
variable
rc
regular chain
R
polynomial ring
options
equation of the form 'method'=mth, where mth is either 'evala' or 'src'
Description
The command SquarefreeFactorization(p, v, rc, R) returns a list of pairs [sqf_i, rc_i]. For each pair, the list sqf_i is a squarefree decomposition of p modulo the saturated ideal of rc_i; each element in the list sqf_i is a pair as [s_j,e_j], where s_j is a squarefree polynomial modulo rc_i and e_j is the exponent of s_j in p.
All the regular chains from the output pairs form a triangular decomposition of rc in the sense of Kalkbrener.
The option 'method' specifies which gcd algorithm to use. The default option, 'method'='evala', uses a modular algorithm. The other option is 'method'='src', which uses a subresultant-based approach. This method is generally slower, but can be faster in some cases, for instance, if the dimension of the saturated ideal of rc is high, say greater than 4.
Assumptions: the polynomial ring is assumed to have characteristic zero; the initial of p is regular w.r.t. rc; v is greater than the main variables of the regular chain rc in R.
Compatibility
The RegularChains[ChainTools][SquarefreeFactorization] command was introduced in Maple 16.
For more information on Maple 16 changes, see Updates in Maple 16.
Examples
Example 1
Example 2
Example 3
See Also
gcd, RegularGcd, RegularizeInitial, Squarefree
Download Help Document