Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
MatrixPolynomialAlgebra[ColumnReducedForm] - compute a column-reduced form of a Matrix
MatrixPolynomialAlgebra[RowReducedForm] - compute a row-reduced form of a Matrix
Calling Sequence
ColumnReducedForm(A, x, U)
RowReducedForm(A, x, U)
Parameters
A
-
Matrix
x
variable name of the polynomial domain
U
(optional) name to return unimodular multiplier
Description
The ColumnReducedForm(A,x) command computes a column-reduced form of an m x n rectangular matrix of univariate polynomials in x over the field of rational numbers Q, or rational expressions over Q (that is, univariate polynomials in x with coefficients in Q(a1,...,an)).
The RowReducedForm(A,x) command computes a row-reduced form over such domains.
A column-reduced form is one in which the column leading coefficient matrix has the same column rank as the rank of the matrix of polynomials. A row reduced form has the same properties but with respect to the leading row.
The column-reduced form is obtained by elementary column operations, which include interchanging columns, multiplying a column by a unit, or subtracting a polynomial multiple of one column from another. The row-reduced form uses similar row operations. The method used is a fraction-free algorithm by Beckermann and Labahn.
The optional third argument returns a unimodular matrix of elementary operations having the property that in the column-reduced case and in the row-reduced case.
Examples
See Also
expand, indets, LinearAlgebra[Determinant], map, Matrix, MatrixPolynomialAlgebra, MatrixPolynomialAlgebra[Coeff], MatrixPolynomialAlgebra[Degree], MatrixPolynomialAlgebra[HermiteForm], MatrixPolynomialAlgebra[PopovForm]
References
Beckermann, B. and Labahn, G. "Fraction-free Computation of Matrix Rational Interpolants and Matrix GCDs." SIAM Journal on Matrix Analysis and Applications. Vol. 22 No. 1, (2000): 114-144.
Download Help Document