Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DifferentialGeometry[LieBracket] - calculate the Lie bracket of two vector fields or 2 vectors in a Lie algebra
Calling Sequence
LieBracket(X, Y)
Parameters
X, Y
-
vector fields, defined on the same manifold or Lie algebra
Description
If X is a vector field on a manifold M and f is a real-valued function on M, then X may be applied to f to give a new real valued function. In coordinates, X(f) is the directional derivative of f with respect to X. The Lie bracket of two vector fields X, Y , defined on a manifold M, is the vector field Z defined by the commutator rule Z(f) = X(Y(f)) - Y(X(f)). The standard notation for the Lie bracket is Z = [X, Y].
The LieBracket command is also used to calculate brackets in an abstract Lie algebra.
This command is part of the DifferentialGeometry package, and so can be used in the form LieBracket(...) only after executing the command with(DifferentialGeometry). It can always be used in the long form DifferentialGeometry:-LieBracket.
Examples
Define a 2-dimensional manifold M..
Example 1.
Define a pair of vector fields X1 and Y1.
Calculate the Lie bracket of X1 and Y1.
Let's check this result against the commutator definition of the Lie bracket acting on functions. To apply a vector field to a function we use the LieDerivative command.
Example 2.
Here is the general coordinate formula for the Lie bracket of two vector fields defined on a 2-dimensional manifold.
Example 3.
Two vector fields are said to commute if their Lie bracket is 0. For example:
Example 4.
The Lie bracket satisfies the Jacobi identity [[X, Y], Z] + [[Z, X], Y] + [[Y, Z], X] = 0. For example:
Example 5.
Use LieAlgebraData and DGsetup to initialize a Lie algebra.
Calculate the Lie bracket of 2 vectors in this Lie algebra.
See Also
DifferentialGeometry, ExteriorDerivative, LieDerivative
Download Help Document