Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
JetCalculus[GeneratingFunctionToContactVector] - find the contact vector field defined by a generating function
Calling Sequences
GeneratingFunctionToContactVector(f,)
Parameters
f - a Maple expression
Description
Let J^1(R^n, R) be the space of 1-jets of a function from R^n to R with contact 1-form Cu = du - u_i dx^i. A vector field X on J^1(R^n, R) such that LieDerivative(X, Cu) = F Cu is called an infinitesimal contact transformation or contact vector field.
There is a formula which assigns to each real-valued function S on J^1(R^n, R) a contact vector field X. The function S is called the generating function for the contact vector field X. The explicit formula for X in terms of S is given for n = 1, 2, 3 in Example 1. The formula in the general case can be found in P. J. Olver, Equivalence, Invariants and Symmetry, page 131
The command GeneratingFunctionToContactVector(S) returns the contact vector field defined by the function S.
The command GeneratingFunctionToContactVector is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form GeneratingFunctionToContactVector(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-GeneratingFunctionToContactVector(...).
Examples
Example 1.
The formula for the contact vector field in terms of the generating function with 1 independent variable.
The formula for the contact vector field in terms of the generating function with 2 independent variables.
The formula for the contact vector field in terms of the generating function with 3 independent variables.
Example 2.
We choose some specific generating functions and calculate the resulting contact vector fields.
Example 3.
Check the properties of the vector field obtained from S = u[0, 1]^2.
X preserves the contact 1-form Cu[0, 0].
X is the prolongation of its projection to the space of independent and dependent variables.
Example 4.
We use the commands GeneratingFunctionToContactVector and Flow to find a contact transformation.
Check that Phi is a contact transformation.
We note that Phi takes on a simple form for t = Pi/4 and that it linearizes the Monge-Ampere equation u[2, 0]*u[0, 2] - u[1, 1]^2 = 1.
See Also
DifferentialGeometry, JetCalculus, Flow, LieDerivative, ProjectionTransformation, Prolong, Pullback, Pushforward
Download Help Document