Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
ratrecon - rational function reconstruction
Calling Sequence
ratrecon(u, m, x, N, D)
Parameters
u, m
-
polynomials in x
x
name
N, D
(optional) non-negative integers
Description
The purpose of this routine is to reconstruct a rational function in x from its image where u and m are polynomials in , and is a field of characteristic 0. Given positive integers N and D, ratrecon returns the unique rational function if it exists satisfying , , , and . Otherwise ratrecon returns FAIL, indicating that no such polynomials n and d exist. The rational function r exists and is unique up to multiplication by a constant in provided the following conditions hold:
If the integers N and D are not specified, they both default to be the integer .
Note, in order to use this routine to reconstruct a rational function from u satisfying , the modulus m being used must be chosen to be relatively prime to d. Otherwise the reconstruction returns FAIL.
The special case of corresponds to computing the N,D Pade approximate to the series u of order .
For the special case of , the polynomial is the inverse of u in provided u and m are relatively prime.
Examples
Error, (in ratrecon) degree bounds too big
See Also
convert[ratpoly], gcdex, iratrecon, Ratrecon
Download Help Document