Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
linalg[hermite] - Hermite Normal Form (reduced row echelon form)
Calling Sequence
hermite(A, x)
hermite(A, x, U)
Parameters
A
-
rectangular matrix of polynomials in x
x
name
U
Description
Important: The linalg package has been deprecated. Use the superseding packages, LinearAlgebra and VectorCalculus, instead.
- For information on migrating linalg code to the new packages, see examples/LinearAlgebraMigration.
The function hermite computes the Hermite Normal Form (reduced row echelon form) of an m by n rectangular matrix of univariate polynomials in x over the field of rational numbers Q, or rational expressions over Q.
In principle this should work for polynomials in x over any field F, i.e. the Euclidean domain F[x], but in practice the code is only as powerful as Maple's normal function.
The Hermite normal form is obtained by doing elementary row operations on A. This includes interchanging rows, multiplying through a row by a unit, and subtracting a multiple of one row from another.
One can use transposes to obtain the column form of the Hermite Normal Form of a matrix.
In the case of three arguments, the third argument U will be assigned the transformation matrix on output, such that the following holds: hermite(A) = U &* A.
The command with(linalg,hermite) allows the use of the abbreviated form of this command.
Examples
To obtain the column form of HNF for H do
See Also
Hermite, linalg(deprecated)[ihermite], linalg(deprecated)[smith], LinearAlgebra, LinearAlgebra[HermiteForm], Smith
Download Help Document