Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
geom3d[StereographicProjection] - find the stereographic projection of a point
Calling Sequence
StereographicProjection(P, P1, s)
Parameters
P
-
the name of the point to be created
P1
a point
s
a sphere
Description
Let S and N be the south pole and the north pole of the sphere s, respectively. If P1 is a point on s, then the computed point P is the stereographic projection of P1 on s to the tangent plane sp at S, i.e., P is the intersection of the line l, which passes through N and P, and sp. If P1 is a point on the tangent plane sp, then the computed point P is a point on the sphere s such that P1 is the stereographic projection of P on s to the tangent plane sp.
For a detailed description of the object created P, use the routine detail (i.e., detail(P))
The command with(geom3d,StereographicProjection) allows the use of the abbreviated form of this command.
Examples
Define the point P(4/3,4/3,4/3) on the sphere s with center at (0,0,2) and radius 2
Find the stereographic projection P1 of P
Find the stereographic projection P2 of P1
The points P and P2 should have the same coordinates
See Also
geom3d[objects], geom3d[transformation]
Download Help Document