Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
PDEtools[dsubs] - perform differential substitutions into expressions
Calling Sequence
dsubs(deriv=a, expr)
dsubs(deriv1=a, '...', expr)
Parameters
a, expr
-
differential expressions
deriv
derivative for which to substitute
deriv1, '...'
equation or sequence of substitution equations
Description
dsubs substitutes the given sequence of equations into expr from left to right, the same way subs does. However, unlike subs, dsubs will substitute the left hand side of each substitution equation until this derivative is eliminated from the target (when this is possible). When many substitution equations are given, they are applied sequentially, as in subs. dsubs also works with anticommutative variables set using the Physics package.
The exception to this rule occurs when a substitution cannot be applied successively, like the algebraic substitution . In this case the result returned is the one obtained by performing a single substitution.
All substitution equations must be in solved form.
This function is part of the PDEtools package, and so it can be used in the form dsubs(..) only after executing the command with(PDEtools). However, it can always be accessed through the long form of the command by using PDEtools[dsubs](..).
Examples
The first example compares the results of subs and dsubs.
In this case subs returns an expression which contains f', the object being substituted.
Here, dsubs completely removes the f', the left hand side of the substitution equation.
Here is a PDE example.
The dsubs command also works with anticommutative variables, natively, without using the approach explained in PerformOnAnticommutativeSystem.
Set first and as suffixes for variables of type/anticommutative (see Setup)
A PDE system example with two unknown anticommutative functions of four variables, two commutative and two anticommutative; to avoid redundant typing in the input that follows and redundant display of information on the screen let's use PDEtools:-diff_table PDEtools:-declare
Now we can enter derivatives directly as the function's name indexed by the differentiation variables and see the display the same way; two PDEs
By inspection, it is clear that the derivatives in pde[2] can be substituted in pde[1] reducing the problem to a simpler one:
Substituting this result for back into pde[2], then multiplying by and subtracting from the above also leads to the PDE system solution, that in this case can also be obtained using a different technique passing the whole system directly to pdsolve
See Also
DEtools, PDEtools, subs
Download Help Document