Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
diffalg[reduced_form] - compute a reduced form of a differential polynomial modulo a radical differential ideal
Calling Sequence
reduced_form (poly, R)
Parameters
p
-
differential polynomial
R
differential ring or radical differential ideal
Description
Important: The diffalg package has been deprecated. Use the superseding package DifferentialAlgebra instead.
The function reduced_form returns a reduced form of p when R is a differential ring. When R is a radical differential ideal, it returns a reduced form of p modulo R.
All the algorithms which return differential polynomials return them under reduced form, though this is not a normal form of this polynomial.
The reduced form of p is a polynomial equivalent to p such that
- All the monomials of r have non zero coefficients.
- If the coefficients of p do not involve fractions, then the coefficients of r also do not.
Some extra simplifications may also happen, since the notation of the derivatives that appear in reduced forms is normalized.
When using the jet notation, different names may represent the same derivative (for example, and ). The order of the derivations in the reduced form is given by the list of the derivations.
When using the diff notation, functions such as and are translated to the same differential indeterminate . The order of the variables in the reduced form is given by the list of the derivations.
When R is a differential ideal, a reduced form of p is a polynomial r equivalent to p modulo R. It satisfies if and only if p belongs to R.
The command with(diffalg,reduced_form) allows the use of the abbreviated form of this command.
Examples
Illustration of reduced form with respect to a differential ring:
Illustration of reduced form modulo a radical differential ideal:
See Also
diffalg(deprecated), diffalg(deprecated)/belongs_to, diffalg(deprecated)/differential_algebra, diffalg(deprecated)/differential_ring, diffalg(deprecated)/field_extension, diffalg(deprecated)/Rosenfeld_Groebner, DifferentialAlgebra[ReducedForm]
Download Help Document