Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
diffalg[field_extension] - define a field extension of the field of the rational numbers
Calling Sequence
field_extension (transcendental_elements = L, base_field = G)
field_extension (relations = J, base_field = G)
field_extension (prime_ideal = P)
Parameters
L
-
list or set of names
G
(optional) ground field
J
list or set of polynomials
P
characterizable differential ideal
Description
Important: The diffalg package has been deprecated. Use the superseding package DifferentialAlgebra instead.
The function field_extension returns a table representing a field extension of the field of the rational numbers. This field can be used as a field of constants for differential polynomial rings.
For all the forms of field_extension, the parameter base_field = G can be omitted. In that case, it is taken as the field of the rational numbers.
The first form of field_extension returns the purely transcendental field extension of G.
The second form of field_extension returns the field of the fractions of the quotient ring G [X1 ... Xn] / (J) where the Xi are the names that appear in the polynomials of R and do not belong to G and (J) denotes the ideal generated by J in the polynomial ring G [X1 ... Xn].
You must ensure that the ideal (J) is prime, field_extension does not check this.
The third form of field_extension returns the field of fractions of R / P where P is a characterizable differential ideal in the differential polynomial ring R.
You must ensure that the characterizable differential ideal P is prime. The function field_extension does not check this.
The embedding differential polynomial ring of P must be endowed with a jet notation.
Examples
See Also
diffalg(deprecated), diffalg(deprecated)/differential_algebra, diffalg(deprecated)/differential_ring, diffalg(deprecated)/reduced_form, diffalg(deprecated)/Rosenfeld_Groebner, diffalg(deprecated)[equations], DifferentialAlgebra[RosenfeldGroebner]
Download Help Document