Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
combinat[conjpart] - conjugate partition
Calling Sequence
conjpart(p)
Parameters
p
-
partition; non-decreasing list of positive integers
Description
The conjpart(p) command computes and returns the conjugate partition of p.
A partition of a positive integer may be represented visually by its Ferrer's diagram. This is a diagram composed of dots in rows, in which the th row consists of dots, for . The total number of dots in the diagram is equal to the number . For example, the partition of has the Ferrer's diagram:
.
consisting of ten dots arranged in three rows, with two dots in the first row, three dots in the second, and five dots in the third row.
Two partitions (of a positive integer ) are said to be conjugates if their Ferrer's diagrams are conjugate, which means that one is obtained from the other, by reflection along the anti-diagonal, by writing the rows as columns and columns as rows. For example, the conjugate of the Ferror diagram above is:
which represents the partition . Therefore, the partitions and are conjugate partitions.
Examples
See Also
combinat[encodepart], combinat[inttovec], combinat[numbpart], combinat[partition], combinat[randpart], Definition/partition
Download Help Document