Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
combinat[character] - compute character table for a symmetric group
combinat[Chi] - compute Chi function for partitions of symmetric group
Calling Sequence
character(n)
Chi(lambda, rho)
Parameters
n
-
non-negative integer
lambda
partition of n; non-decreasing list of positive integers
rho
Description
Given a group (G,*), a group of matrices (H,&*) homomorphic to G is termed a representation of G. A representation is said to be reducible if there exists a similarity transformation
that maps all elements of H to the same non-trivial block diagonal structure. If a representation is not reducible, it is termed an irreducible representation.
Given two elements of the same conjugacy class in G, the traces of their corresponding matrices in any representation are equal. The character function Chi is defined such that Chi of a conjugacy class of an irreducible representation of a group is the trace of any matrix corresponding to a member of that conjugacy class.
Taking G to be the symmetric group on n elements, , there is a one-to-one correspondence between the partitions of n and the non-equivalent irreducible representations of G. There is also a one-to-one correspondence between the partitions of n and the conjugacy classes of G.
The Maple function Chi works on symmetric groups. Chi(lambda, rho) will compute and return the trace of the matrices in the conjugacy class corresponding to the partition rho in the irreducible representation corresponding to the partition lambda, where lambda and rho are of type partition. Clearly, both rho and lambda must be partitions of the same number.
The function character(n) computes Chi(lambda, rho) for all partitions lambda and rho of n. Thus, it computes the character of all conjugacy classes for all irreducible representations of the symmetric group on n elements.
For partitions of n, in ascending lexicographical ordering, for example , the ,th entry of the character table for is given by
thus the row ordering is reversed. This is the standard layout as given in the book The Theory of Group Characters by D. E. Littlewood.
Examples
See Also
combinat, combinat[partition], type/partition
Download Help Document