Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Slode[candidate_points] - determine points for power series solutions
Calling Sequence
candidate_points(ode, var, 'points_type'=opt)
candidate_points(lode, 'points_type'=opt)
Parameters
ode
-
linear ODE with polynomial coefficients
var
dependent variable, for example y(x)
opt
(optional) type of points; one of dAlembertian, hypergeom, rational, polynomial, or all (the default).
LODEstr
LODEstruct data structure
Description
The candidate_points command determines candidate points for which power series solutions with d'Alembertian, hypergeometric, rational, or polynomial coefficients of the given linear ordinary differential equation exist.
If ode is an expression, then it is equated to zero.
The routine returns an error message if the differential equation ode does not satisfy the following conditions.
ode must be linear in var
ode must have polynomial coefficients in
ode must either be homogeneous or have a right hand side that is rational in
The coefficients of ode must be either rational numbers or depend rationally on one or more parameters.
If opt=all, the output is a list of three elements:
a set of hypergeometric points, which may include the symbol 'any_ordinary_point'
a set of rational points;
a set of polynomial points.
Otherwise, the output is the set of the required points.
Note that the computation of candidate points for power series solutions with d'Alembertian coefficients is currently considerably more expensive computationally than for the other three types of coefficients.
Examples
Inhomogeneous equations are handled:
An equation which has d'Alembertian series solutions at any ordinary point but doesn't have hypergeometric ones:
See Also
LODEstruct, Slode, Slode[candidate_mpoints]
Download Help Document