Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
RegularChains[FastArithmeticTools][NormalizePolynomialDim0] - normalize a polynomial w.r.t a 0-dim regular chain
Calling Sequence
NormalizePolynomialDim0(f, rc, R)
Parameters
R
-
a polynomial ring
rc
a regular chain of R
f
polynomial of R
Description
The command NormalizePolynomialDim0 returns a normalized form of f w.r.t. rc, that is, a polynomial which is associated to f modulo rc, such that is normalized w.r.t. rc.
rc is zero-dimensional regular chain, and f together with rc forms a zero-dimensional regular chain.
Moreover R must have a prime characteristic such that FFT-based polynomial arithmetic can be used for this actual computation. The higher the degrees of f and rc are, the larger must be such that divides . If the degree of f or rc is too large, then an error is raised.
Examples
We consider two bivariate polynomials and want to compute their common solutions
We first compute their subresultant chain using FFT techniques
We deduce their resultants
We observe below that no root of r2 cancels the leading coefficients of f1 or f2. Hence, any roots of r2 can be extended into a solution of the system by a GCD computation.
We define the regular chain consisting of r2
We compute the GCD of f1 and f2 modulo r2
We normalize this GCD w.r.t. r2 which leads to a simpler expression with one as leading coefficient
See Also
NormalForm, NormalFormDim0, NormalizeRegularChainDim0, ReduceCoefficientsDim0, RegularChains
Download Help Document