Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
RegularChains[ConstructibleSetTools][Union] - compute the union of two constructible sets
Calling Sequence
Union(cs1, cs2, R)
Parameters
cs1, cs2
-
constructible sets
R
polynomial ring
Description
The command Union(cs1, cs2, R) returns a constructible set, the union of cs1 and cs2.
There might be redundancy in the output.
This command is part of the RegularChains[ConstructibleSetTools] package, so it can be used in the form Union(..) only after executing the command with(RegularChains[ConstructibleSetTools]). However, it can always be accessed through the long form of the command by using RegularChains[ConstructibleSetTools][Union](..).
Examples
Define a polynomial ring first.
Consider the following polynomials of .
Let cs1 be the solution set of and , and cs2 be the solution set of and .
Use the command Union to obtain the union of these two solution sets.
The Union command is not guaranteed to remove all the redundant components, for efficiency consideration. Use the MakePairwiseDisjoint command to remove them.
See Also
Complement, ConstructibleSet, ConstructibleSetTools, GeneralConstruct, Intersection, MakePairwiseDisjoint, RegularChains
Download Help Document