Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
RegularChains[ChainTools][ListConstruct] - constructs regular chains
Calling Sequence
ListConstruct(lp, rc, R)
ListConstruct(p, rc, R, 'normalized'='yes')
ListConstruct(p, rc, R, 'normalized'='strongly')
Parameters
lp
-
list of polynomials of R
rc
regular chain of R
R
polynomial ring
'normalized'='yes'
(optional) boolean flag
'normalized'='strongly'
Description
The command ListConstruct(lp, rc, R) returns a list of regular chains which form a triangular decomposition of the regular chain obtained by extending rc with lp.
It is assumed that lp is a list of non-constant polynomials sorted in increasing main variable, and that any main variable of a polynomial in lp is strictly greater than any algebraic variable of rc.
It is also assumed that the polynomials of rc together with those of lp form a regular chain.
Although rc with lp is assumed to form a regular chain, several regular chains may be returned; this is because the polynomials of lp may be factorized with respect to rc.
To avoid these possible factorizations, use RegularChains[ChainTools][Chain]
If 'normalized'='yes' is present, then rc must be normalized. In addition, every returned regular chain is normalized.
If 'normalized'='strongly' is present, then rc must be strongly normalized. In addition, every returned regular chain is strongly normalized.
This command is part of the RegularChains[ChainTools] package, so it can be used in the form ListConstruct(..) only after executing the command with(RegularChains[ChainTools]). However, it can always be accessed through the long form of the command by using RegularChains[ChainTools][ListConstruct](..).
Examples
See Also
Chain, ChainTools, Construct, Empty, Equations, PolynomialRing, RegularChains
Download Help Document