Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
RegularChains[ChainTools][Lift] - lift a regular chain
Calling Sequence
Lift(F, R, rc, e, m)
Parameters
F
-
list of polynomials of R
R
polynomial ring
rc
regular chain of R
e
positive integer or a variable of R
m
positive integer or a coefficient of R
Description
The function Lift returns a lifted regular chain over R lifted from the regular chain rc. That is, the output regular chain reduces every polynomial of F to zero over R as long as rc does so under an image of R. This command works for two types of images of R. If R has characteristic 0, it lifts from an image of finite characteristic. If R has finite characteristic, it lifts from an image with fewer variables.
More precisely, if e is a positive integer, then the base field is assumed to be the field of rational numbers and rc reduces every polynomial of F modulo m, where m is greater than or equal to . If e is a variable, then the base field is assumed to be a prime field and rc reduces every polynomial of F modulo e-m, where e is a variable of R and m belongs to the base field.
In both cases, F must be a square system, that is the number of variables of R is equal to the number of elements of F. In the former case, rc and e-m must form a zero-dimensional normalized regular chain which generates a radical ideal in R. In the latter case, rc must be a zero-dimensional normalized regular chain which generates a radical ideal in R modulo m.
In the former case, the Jacobian matrix of F must be invertible modulo rc and e-m. In the latter case, the Jacobian matrix of F must be invertible modulo rc and m.
The function uses Hensel lifting techniques. If e is a positive integer then e is used as an upper bound on the number of lifting steps.
For the case where e is variable, FFT polynomial arithmetic is used. This implies that the ring R should satisfy the hypotheses of the commands from the FastArithmeticTools subpackage.
Examples
First we consider an example where coefficients are lifted.
Next we consider an example where a variable is lifted.
See Also
Equations, FastArithmeticTools, JacobianMatrix, MatrixInverse, PolynomialRing, RegularChains, Triangularize
Download Help Document