Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
RegularChains[ChainTools][ExtendedNormalizedGcd] - extended normalized GCD of two polynomials with respect to a regular chain
Calling Sequence
ExtendedNormalizedGcd(p1, p2, v, rc, R)
Parameters
p1
-
polynomial of R
p2
v
variable of R
rc
regular chain of R
R
polynomial ring
Description
The command ExtendedNormalizedGcd(p1, p2, v, rc, R) returns a list of pairs where , , are polynomials of R and is a regular chain of R.
For each pair, the polynomial is a normalized GCD of p1 and p2 modulo the saturated ideal of .
For each pair, the polynomials , , satisfy modulo the saturated ideal of .
For each pair, the leading coefficient of the polynomial with respect to v is normalized (and thus regular) modulo the saturated ideal of .
The returned regular chains form a triangular decomposition of rc (in the sense of Kalkbrener).
The returned regular chains are strongly normalized.
Comparing to ExtendedRegularGcd, the output of ExtendedNormalizedGcd will look simpler in general when rc is zero-dimensional.
However, the output of ExtendedNormalizedGcd may be much larger and much more expensive to get than the one of ExtendedRegularGcd, when rc is not zero-dimensional.
rc must be strongly normalized.
v must be the common main variable of p1 and p2.
The initials of p1 and p2 must be regular with respect to rc.
This command is part of the RegularChains[ChainTools] package, so it can be used in the form ExtendedNormalizedGcd(..) only after executing the command with(RegularChains[ChainTools]). However, it can always be accessed through the long form of the command by using RegularChains[ChainTools][ExtendedNormalizedGcd](..).
Examples
See Also
Chain, Empty, ExtendedRegularGcd, PolynomialRing, RegularChains, RegularGcd, Regularize, RegularizeInitial
References
Moreno Maza, M. "On triangular decompositions of algebraic varieties" Technical Report 4/99, NAG, UK, Presented at the MEGA-2000 Conference, Bath, UK. Available at http://www.csd.uwo.ca/~moreno.
Download Help Document