Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
RegularChains[ChainTools][Extend] - decomposes a triangular set into regular chains
Calling Sequence
Extend(rc, lp, R)
Extend(rc, lp, R, 'output'='lazard')
Parameters
rc
-
regular chain of R
lp
polynomial of R
R
polynomial ring
'output'='lazard'
(optional) boolean flag
Description
The command Extend(rc, lp, R) returns a triangular decomposition (by means of regular chains) of the quasi-component defined by rc and lp. This assumes that polynomials of lp form a triangular set and are sorted in an ascending order according to their main variables. Moreover, it is assumed that each main variable of a polynomial in lp is larger than any variable appearing in rc. Therefore, the polynomials in rc and lp together must form a triangular set, which is, however, not necessarily a regular chain.
If the option 'output'='lazard' is present then the triangular decomposition is the sense of Lazard otherwise it is in the sense of Kalkbrener.
Compatibility
The RegularChains[ChainTools][Extend] command was introduced in Maple 15.
For more information on Maple 15 changes, see Updates in Maple 15.
Examples
See Also
Chain, Empty, Equations, Inverse, IsRegular, IsStronglyNormalized, PolynomialRing, RegularChains, RegularizeDim0, RegularizeInitial, SparsePseudoRemainder
Download Help Document