Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
PolynomialIdeals[IsPrime] - test whether an ideal is prime
PolynomialIdeals[IsPrimary] - test whether an ideal is primary
PolynomialIdeals[IsMaximal] - test whether an ideal is maximal
PolynomialIdeals[IsProper] - test whether an ideal is proper
Calling Sequence
IsPrime(J, k)
IsPrimary(J, k)
IsMaximal(J, k)
IsProper(J, X)
Parameters
J
-
polynomial ideal
k
(optional) field extension
X
(optional) ring variables
Description
The IsPrime, IsPrimary, and IsMaximal commands test whether an ideal is prime, primary, or maximal, respectively. An ideal is prime if in J implies either f in J or g in J. It is primary if in J implies that some power of f or of g is in J, and it is maximal if it is not contained within a larger ideal, other than the entire polynomial ring.
Prime ideals are primary and radical. Maximal ideals are zero-dimensional and prime. By convention, prime, primary, and maximal ideals must also be proper, meaning that they are not the entire polynomial ring. The IsProper command can be used to test this condition separately. An optional second argument allows you to override the ring variables.
Primality tests are performed over the domain implied by the coefficients - usually the rationals or the integers mod p. Additional field extensions can be specified with an optional second argument k, which may be a single RootOf or radical, or a list or set of RootOfs and radicals.
Of particular interest is the fact that any ideal can be decomposed into the finite intersection of primary ideals. The PrimaryDecomposition command can be used to do this. The solution set of a primary ideal is an irreducible affine variety.
The algorithms employed by these commands require polynomials over a perfect field. Infinite fields of positive characteristic are not supported, and over finite fields only zero-dimensional ideals can be handled because the dimension reducing process generates infinite fields.
Note: In contrast with Groebner[IsProper], PolynomialIdeals[IsProper] does not consider the zero ideal to be proper.
Examples
See Also
alias, Groebner[IsProper], PolynomialIdeals, PolynomialIdeals[HilbertDimension], PolynomialIdeals[IdealMembership], PolynomialIdeals[IsRadical], PolynomialIdeals[PrimaryDecomposition], PolynomialIdeals[Simplify], PolynomialIdeals[ZeroDimensionalDecomposition]
References
Gianni, P.; Trager, B.; and Zacharias, G. "Grobner bases and primary decompositions of polynomial ideals." J. Symbolic Comput., Vol. 6 (1988): 149-167.
Download Help Document