Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
OreTools[MathOperations][HilbertTwistReduction] - return isomorphic images of Ore polynomials under the Hilbert twist reduction
OreTools[MathOperations][InverseOfHilbertTwistReduction] - return pre-images of Ore polynomials under the HilbertTwistReduction
OreTools[MathOperations][AccurateIntegration] - check for the existence of a primitive element, and perform accurate integration
Calling Sequence
HilbertTwistReduction(P, A, 'B')
InverseOfHilbertTwistReduction(P, A)
AccurateIntegration(L, A)
Note: An Ore polynomial ring B is of Hilbert's twist type if its (pseudo) derivation maps everything to zero. For an Ore polynomial ring A with nontrivial automorphism, there is a ring isomorphism from A onto the ring B of Hilbert's twist type whose automorphism is the same as the A's. The isomorphism is called the Hilbert twist reduction.
Parameters
P
-
Ore polynomial or a list of Ore polynomials; to define an Ore polynomial, use the OrePoly structure.
L
Ore polynomial.
A
Ore ring with nontrivial automorphism; to define an Ore algebra, use the SetOreRing function.
B
(optional) unevaluated name.
Description
The HilbertTwistReduction(P, A, B) calling sequence returns the image of P under the Hilbert twist reduction. If the (optional) third argument B is present, it is assigned to the Ore ring whose automorphism is the same as the A's and whose (pseudo) derivation sends everything to zero.
The InverseOfHilbertTwistReduction(P, A) calling sequence returns the pre-image of P under the Hilbert twist reduction. Note that A is the source ring of the Hilbert twist reduction.
Let A be the shift, q-shift, or differential algebra. The AccurateIntegration(L, A) calling sequence performs accurate integration, which solves the following problem: Let y satisfy L(y)=0 and g satisfy lambda(g)=y, where lambda means the usual derivative in the differential case, the difference operator in the shift case, and the q-difference operator in the q-shift case. The function builds an annihilator S (represented as an OrePoly structure) for g of the same degree as that of L, and an operator K such that g=K(y) if both exist. Otherwise, it returns .
Examples
Define an Ore ring.
A := SetOreRing(n, 'difference', 'sigma' = proc(p, x) eval(p, x=x+1) end, 'sigma_inverse' = proc(p, x) eval(p, x=x-1) end, 'delta' = proc(p, x) eval(p, x=x+1) - p end, 'theta1' = 0);
Examples of AccurateIntegration:
See Also
OreTools, OreTools/OreAlgebra, OreTools/OrePoly, OreTools[MathOperations], OreTools[Properties], OreTools[SetOreRing]
References
Abramov, S.A., and van Hoeij, M. "Integration of Solutions of Linear Functional Equations." Integral Transformations and Special Functions. Vol. 8 No. 1-2. (1999): 3-12.
Download Help Document