Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
GraphTheory[GraphNormal] - finds the normal form of a graph
Calling Sequence
GraphNormal(G)
GraphNormal(M)
GraphNormal(M,ws)
Parameters
G
-
undirected unweighted graph
M
adjacency matrix for undirected unweighted graph
ws
working storage
Description
The GraphNormal command computes a normal form for an undirected, unweighted graph. The normal form chosen is defined as the permutation that puts the greatest number of 1's in the earliest location in the adjacency matrix, when examining the entries in the order M[1,2], ..., M[1,n], M[2,3], ..., M[2,n], M[3,4], ....
This problem is exponential in the number of vertices, so can only be expected to return in reasonable time for graphs with a small to moderate number of vertices.
The form of the return is different for the three possible calling sequences:
For the first calling sequence, when the input is a graph, GraphNormal returns the permuted normal form graph.
For the second calling sequence, when the input is an adjacency matrix, GraphNormal returns a permutation in the form [1=n[1], 2=n[2], ...] that maps the original vertices to the normal form vertices.
For the third calling sequence, the working storage ws must be rectangular with wordsize integer datatype and of size when is the number of vertices in the graph, and the permutation [n[1],n[2],...] is stored in the first elements of the workspace on return.
Note that if the adjacency matrix is rectangular storage with wordsize integer datatype, then it is modified in-place to the adjacency matrix of the normal form. If the working storage is also specified, then the implementation will allocate no memory, and the validation that the input adjacency matrix is symmetric is skipped, so this is the most efficient calling sequence. If in this case the input adjacency matrix is not symmetric, the result is not defined.
Examples
Start with the Petersen graph.
Obtain normalization.
Compare adjacency matrices.
Create a randomized isomorphic copy, and verify that normalizations are equal.
Create another randomized isomorphic copy, and verify that normalizations are equal.
See Also
AdjacencyMatrix, IsomorphicCopy
Download Help Document