Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Finance[EuropeanSwaption] - create a new European-style swaption
Calling Sequence
EuropeanSwaption(irswap, exercise, opts)
Parameters
swap
-
simple swap data structures; interest rate swap
exercise
a non-negative constant, a string containing a date specification in a format recognized by Finance[ParseDate], or a date data structure; the maturity time or date
opts
(optional) equation(s) of the form option = value where option is one of referencedate or daycounter; specify options for the EuropeanSwaption command
Description
The EuropeanSwaption command creates a new European-style swaption with the specified payoff and maturity. The swaption can be exercised only at the time or date specified by the exercise parameter. This is the opposite of an American-style swaption, which can be exercised at any time before the expiration.
The parameter swap is the underlying interest rate swap (see InterestRateSwap for more details).
The parameter exercise specifies the time or date when the option can be exercised. It can be given either as a non-negative constant or as a date in any of the formats recognized by the Finance[ParseDate] command.
The LatticePrice command can be used to price a European-style swaption using any given binomial or trinomial tree.
Options
referencedate = a string containing a date specification in a format recognized by Finance[ParseDate] or a date data structure -- This option provides the evaluation date. It is set to the global evaluation date by default.
daycounter = a name representing a supported day counter (e.g. ISDA, Simple) or a day counter data structure created using the DayCounter constructor -- This option provides a day counter that will be used to convert the period between two dates to a fraction of the year. This option is used only if one of earliestexercise or latestexercise is specified as a date.
Compatibility
The Finance[EuropeanSwaption] command was introduced in Maple 15.
For more information on Maple 15 changes, see Updates in Maple 15.
Examples
Construct an interest rate swap receiving the fixed-rate payments in exchange for the floating-rate payments.
Compute the at-the-money rate for this interest rate swap.
Construct three swaps.
Here are cash flows for the paying leg of your interest rate swap.
Here are cash flows for the receiving leg of your interest rate swap.
These are days when coupon payments are scheduled to occur.
Price these swaptions using the Hull-White trinomial tree.
Price your swaptions using the tree constructed above.
You can also price these swaptions using an explicitly constructed trinomial tree.
Price your swaptions using the second tree.
See Also
Finance[BermudanSwaption], Finance[BinomialTree], Finance[BlackScholesBinomialTree], Finance[BlackScholesTrinomialTree], Finance[EuropeanSwaption], Finance[GetDescendants], Finance[GetProbabilities], Finance[GetUnderlying], Finance[ImpliedBinomialTree], Finance[ImpliedTrinomialTree], Finance[LatticeMethods], Finance[LatticePrice], Finance[MultinomialTree], Finance[SetDescendants], Finance[SetProbabilities], Finance[SetUnderlying], Finance[StochasticProcesses], Finance[TreePlot], Finance[TrinomialTree]
References
Brigo, D., Mercurio, F., Interest Rate Models: Theory and Practice. New York: Springer-Verlag, 2001.
Download Help Document