Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Working with abstract differential forms
Description
This worksheet provides additional information for working with abstract differential forms, that is, differential forms which are defined abstractly without reference to any underlying system of coordinates. This new functionality of DifferentialGeometry is intended to supercede the difforms package.
There are 2 different ways of using DifferentialGeometry to calculate with abstract differential forms. The first way mirrors the scenerio current provided by difforms -- one defines a list of forms (using DGsetup) by simply specifying their degrees. Then one can calculate wedge products and exterior derivatives of these forms. Equations for exterior derivatives can be specified. For the second method one indicates which of the 1-forms being defined constitute a co-frame for the underlying manifold. In this setting, the vector fields dual to the given 1-forms are automatically created by DGsetup. Wedge products, interior products, exterior derivatives and Lie derivatives can all be computed.
The functionalities provided by DGzip, GetComponents, Annihilator, DGbasis and DGinfo are available as appropriate.
Examples
Example 1.
Create an abstract manifold with a function 1-forms and a 2-form .
The command DGinfo gives the names all scalars and forms which are defined.
Scalar products, wedge products and sums of abstract forms can be defined.
The command DGinfo can also be used to extract information about the form .
New forms can be defined on M.
We can use the DGzip and GetComponents commands with abstract forms.
We can take the exterior derivative of a form.
The 2-form dalpha has been added to list of defined forms and is now available for subsequent computations.
Exterior derivatives of defined forms can be specified.
Example 2.
In this example we illustrate calculations using the second calling sequence for working with abstract forms. The 1-forms defining the co-frame are enclosed in separate list (the degrees of the forms defining the co-frame need not be given).
All the functionality of Example 1 is retained but now the manifold is taken to have dimension 3. The 1-forms define a co-frame on and the dual vector fields { have been initialized.
We can define vector fields on .
We can calculate the interior products of vectors and forms.
The interior products of {} with the 2-form alpha are automatically defined as new forms on
Iterated interior products are known to be skew-symmetric:
The forms are taken to be independent so the commands such as Annihilator and DGbasis will work in this setting.
The Lie derivative of forms are computed from the Cartan formula.
Here both terms in this equation are new forms which are added to the list of defined forms on .
Equations for both exterior derivatives and interior products can be specified.
The Lie bracket can also be computed.
See Also
DifferentialGeometry, Annihilator, DGbasis, DGinfo, DGsetup, ExteriorDerivative, Hook, LieBracket, LieDerivative
Download Help Document