Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DifferentialGeometry:-Tools[DGmap]
Calling Sequence
DGmap(n, f, X, arg1, arg2, ..., argN)
Parameters
n
-
a positive integer
f
a Maple procedure
X
any DifferentialGeometry object
argN
(optional) arguments for the procedure f
Description
The command DGmap is similar to the command map. DGmap will apply the procedure f to the coefficients of the object X. The integer n indicates the position of the coefficients of X in the argument list of f. Thus DGmap(1, f, X, arg1, arg2, ..., argN) will replace the coefficient C of X with f(C, arg1, arg2, ..., argN); DGmap(2, f, X, arg1, arg2, ..., argN) will replace the coefficient C of X with f(arg1, C, arg2, ..., argN); and so on.
This command is part of the DifferentialGeometry:-Tools package, and so can be used in the form DGmap(...) only after executing the commands with(DifferentialGeometry) and with(Tools) in that order. It can always be used in the long form DifferentialGeometry:-Tools:-DGmap.
Examples
Define a manifold M with local coordinates [x, y].
Example 1.
Define a vector field X depending on parameters C1 and C2. Differentiate the coefficients of X with respect to C1 and C2.
Example 2.
Define a differential 1-form omega depending on a parameter t. Integrate the coefficients of omega with respect to t from t = 0 .. 1
Example 3.
Evaluate the tensor T at x = 0 by taking the limit of the coefficients as x -> 0.
Example 4.
Substitute s = 1 into the transformation Phi:
See Also
DifferentialGeometry, Tools, Transformation
Download Help Document