Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DifferentialGeometry:-Tools[DGbifom, DGform, DGtensor, DGvector]
Calling Sequence
DGbiform(x, M)
DGform(x, M)
DGtensor(x, indexType, M)
DGvector(y, M)
Parameters
x
-
a positive integer, a list of positive integers, a coordinate variable, or a list of coordinate variables
M
(optional) the name of defined frame
indexType
specifying the index type of the tensor
y
a positive integer or a coordinate variable
Description
The command DGform will create a single term differential form. Let Theta = [theta_1, theta_2, theta_3, ...] denote the coframe for the current frame or, if the optional argument M is given, the frame M. The list Theta can be obtained from the command DGinfo with the keyword "frameBaseForms" or "frameJetForms". Let V = [x_1, x_2, x_3, ...] denote the local coordinates for the current frame or, if the optional argument M is given, the frame M. The list V can be obtained from the command DGinfo with the keyword "frameIndependentVariables" or "frameJetVariables". If the integer i or coordinate x_i is given, the command returns the corresponding 1-form theta_i. If a list of p integers [i, j, k, ...] or coordinates [x_i, x_j, x_k, ...] is given, the command returns the p-form theta_i &w theta_j &w theta_k...
The commands DGbiform, DGtensor, and DGvector work in a similar fashion.
The command DGform is part of the DifferentialGeometry:-Tools package and so can be used in the form DGform(...) only after executing the commands with(DifferentialGeometry) and with(Tools) in that order. It can always be used in the long form DifferentialGeometry:-Tools:-DGform. DGbiform, DGtensor, and DGvector work in the same way.
Examples
Example 1.
Define a manifold M with coordinates [x, y, z, w].
Example 2.
Define a rank 3 vector bundle E with coordinates [x, y, u, v, w] over a two dimensional base with coordinates [x, y].
Define the jet space J^2(R^2, R^2) for two functions u and v of 2 independent variables x and y.
See Also
DifferentialGeometry, Tools, evalDG, DGinfo, DGzip
Download Help Document