Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Tensor[SymmetrizeIndices] - symmetrize or skew-symmetrize a list of tensor indices
Calling Sequences
SymmetrizeIndices(T, Indices, keyword)
Parameters
T - a tensor
Indices - a list of integers, referring to the arguments of T
keyword - a keyword string, either "Symmetric" or "SkewSymmetric"
Description
We illustrate the conventions for this program by describing some simple special cases. If T is a rank 3 covariant tensor, then the result of symmetrizing T over its first 2 arguments is the tensor U(X, Y, Z ) = 1/2*(T(X, Y, Z) + T(Y, X, Z)). The result of skew-symmetrizing T over its 1st and 3rd arguments is the tensor V(X, Y, Z) = 1/2*(T(X, Y, Z) - T(Z, Y, X)). The symmetrization of T over all its indices is the tensor W(X, Y, Z ) = 1/6*(T(X, Y, Z) + T(Y, X, Z) + T(Z, Y, Z) + ...), where the sum contains 6 terms involving all possible permutations of the arguments X, Y, Z.
SymmetrizeIndices(T, Indices, keyword) will symmetrize or skew-symmetrize the tensor T over the arguments given by the Indices list. Note that all the elements of the Indices list must refer to indices of the same tensor index type.
SymmetrizeIndices acts as a projection operator -- two applications of SymmetrizeIndices to the same tensor gives the same result as a single application.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form SymmetrizeIndices(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-SymmetrizeIndices.
Examples
Example 1.
First create a 4 dimensional manifold M and define a rank 5 tensor T on M.
Symmetrize T1 over its 1st and 2nd arguments.
Skew-symmetrize T1 over its 1st, 2nd and 4th arguments.
Note that SymmetrizeIndices acts as a projection operator.
See Also
DifferentialGeometry, Tensor, RearrangeIndices
Download Help Document