Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Tensor[RearrangeIndices] - rearrange the argument/indices of a tensor
Calling Sequences
RearrangeIndices(T, P)
RearrangeIndices(T, C)
Parameters
T - a tensor of rank r
P - list of integers, giving a permutation of the integers 1..r
C - a list of lists of integers, describing a permutation as the composition of cycles
Description
We describe, by example, the conventions used to define a permutation. The list P = [2, 3, 1, 5, 4] denotes a permutation acting on a 5 element list A by sending the the first element of A to the second slot, the second element of A to the third slot and so on. Thus, if we apply P to A = [a, b, c, d, e] the result is [c, a, b, e, d]. The same permutation can be written in cycle notation as C = [[1, 2, 3], [4, 5]]. As another example the permutation which interchanges b with c in the list A is defined in permutation notation by P = [1, 3, 2, 4, 5] or in cycle notation as C = [2, 3].
A tensor T is a multi-linear map whose arguments are vectors or forms. The command RearrangeIndices defines a new tensor by rearranging the arguments of T according to the permutation P. For example, if T is a rank 3 covariant tensor and S = RearrangeIndices(T, [3, 2, 1]) then S(X, Y, Z) = T(Z, Y, X).
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form RearrangeIndices(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-RearrangeIndices.
Examples
Example 1.
First create a 3 dimensional manifold M and define two tensors T1 and T2 on M.
Interchange the arguments for the tensor T1.
Interchange argument 1 with 2 and argument 3 with 4 in the tensor T2. This can be done in two ways, by specifying a permutation or a list of cycles.
Cyclicly permute the last 3 arguments of T2. This can be done in two ways, by specifying a permutation or a list of cycles.
Cyclicly permute all 4 arguments of T2. This can be done in two ways, by specifying a permutation or a list of cycles.
Example 2.
Arguments of different spatial types can also be rearranged. Define a rank 2 vector bundle E over a 2 dimensional base.
See Also
DifferentialGeometry, Tensor, SymmetrizeIndices
Download Help Document