Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Tensor[KroneckerDeltaSpinor] - create the Kronecker delta spinor
Calling Sequences
KroneckerDeltaSpinor(spinorType, ,fr)
Parameters
spinorType - a string, either "spinor" or "barspinor"
fr - (optional) the name of a defined frame
Description
The Kronecker delta spinor is the type (1,1) spinor whose components in any coordinate system are given by the identity matrix.
The command KroneckerDeltaSpinor(spinorType) returns a Kronecker delta spinor of the type specified by spinorType in the current frame unless the frame is explicitly specified.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form KroneckerDeltaSpinor(...) only after executing the commands with(DifferentialGeometry); with(Tensor); in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-KroneckerDeltaSpinor.
Examples
Example 1.
First create a vector bundle M with base coordinates [x, y, z, t] and fiber coordinates [z1, z2, w1, w2].
Here are the 2 Kronecker delta spinors one can define:
Define some other manifold N.
The current frame is N. Because there are no fiber variables, one cannot calculate a Kronecker delta spinor in this frame. To now re-calculate the Kronecker delta spinor KK1, either use the ChangeFrame command or pass KroneckerDeltaSpinor the frame name M as a second argument.
Example 2.
The Kronecker delta spinor defines an identity mapping on spinors of the indicated type. The linear transformation associated to the Kronecker delta spinor K is defined by contracting the covariant index of K against the contravariant index of the spinor S1. We see that the result is S2 = S1 so that the linear transformation defined by K is indeed the identity transformation.
See Also
DifferentialGeometry, Tensor, BivectorSolderForm, CanonicalTensors, KroneckerDelta, PermutationSymbol, SolderForm
Download Help Document