Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Tensor[KroneckerDelta] - find the Kronecker delta tensor of rank r
Calling Sequences
KroneckerDelta(spatialType, r, fr)
Parameters
spatialType - a string, either "bas" or "vrt"
r - a non-negative integer
fr - (optional) the name of a defined frame
Description
The Kronecker delta tensor K of rank r is the type (r, r) tensor which is defined as follows. Let I be the type (1, 1) tensor whose components in any coordinate system are given by the identity matrix, that is, for any vector field I(X) = X. Then K is obtained from the r-fold tensor product of I fully skew-symmetrizing over all the covariant indices.
The command KroneckerDelta(spatialType, r) returns the rank r Kronecker delta tensor K of the type specified by indexType in the current frame unless the frame is explicited specified.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form KroneckerDelta(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-KroneckerDelta.
Examples
Example 1.
We create a 3 dimensional manifold M with coordinates [x, y, z].
Define the 3 different Kronecker delta tensors on M.
We check that the contraction of K3 gives a multiple of K2 and that the contraction of K2 gives a multiple of K1.
We check that K2 can be constructed from K1 tensor K1 by rearranging the indices and by skew-symmetrization.
Example 2.
We create a 2 dimensional vector bundle over E with fiber coordinates [p, q].
Define the possible Kronecker delta tensors on the fibers of E.
See Also
DifferentialGeometry, Tensor, ContractIndices, RearrangeIndices, SymmetrizeIndices, PermutationSymbol, Physics[LeviCivita], Physics[KroneckerDelta]
Download Help Document