Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Tensor[InverseMetric] - find the inverse of a metric tensor
Calling Sequences
InverseMetric(g)
Parameters
g - a metric tensor
Description
A metric tensor g is a symmetric, non-degenerate, rank 2 covariant tensor. The inverse of a metric tensor is a symmetric, non-degenerate, rank 2 contravariant tensor h. The components of h are given by the inverse of the matrix defined by the components of g.
InverseMetric(g) calculates the inverse of the metric tensor g.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form InverseMetric(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-InverseMetric.
Examples
Example 1.
First create a manifold M and define a metric tensor on the tangent space of M.
Calculate the inverse of g.
Check the result -- the contraction of h with g should be the type (1, 1) tensor whose components are the identity matrix.
Example 2.
First create a rank 3 vector bundle E on M and define a metric on the fibers.
See Also
DifferentialGeometry, Tensor, ContractIndices, RaiseLowerIndices, Physics[g_]
Download Help Document