Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Tensor[DirectionalCovariantDerivative] - calculate the covariant derivative of a tensor field in the direction of a vector field and with respect to a given connection
Calling Sequences
DirectionalCovariantDerivative(X, T, C1, C2)
Parameters
X - a vector field
T - a tensor field
C1 - a connection
C2 - (optional) a second connection, needed when the tensor T is a mixed tensor defined on a vector bundle E -> M
Description
Let M be a manifold and let nabla be a linear connection on the tangent bundle of M. If X and Y are vector fields on M, then nabla_X(Y) is a vector field on M, called the directional covariant derivative of Y in the direction X with respect to the connection nabla. If alpha is a differential 1-form, then nabla_X(alpha) is the 1-form defined by
nabla_X(alpha)(Y) = X(alpha(Y)) - alpha(nabla_X(Y)).
The definition of the directional covariant derivative operator nabla_X is extended to tensor fields on M as a derivation with respect to the tensor product.
Let E -> M be a vector bundle and let nabla be a connection on E. If X is a vector field on M and Z a section of E, then nabla_X(Z) is a section of E, called the directional covariant derivative of the section Z in the direction X with respect to the connection nabla. The definition of the directional covariant derivative operator nabla_X is extended to tensor fields on the fibers of E as above.
Let E -> M be a vector bundle, let nabla1 be a linear connection on the tangent bundle of M and nabla2 be a connection on E. Let T be a mixed tensor on E, say, for example, T = U &t V, where U is a tensor field on M and V is a tensor field on the fibers of E. (In general T will be a sum of such tensor products). Then the directional covariant derivative of T in the direction X with respect to the connections nabla_1 and nabla_2 is nabla_X(T) = nabla1_X(U) &t V + U &t nabla2_X(V).
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form DirectionalCovariantDerivative(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-DirectionalCovariantDerivative.
Examples
Example 1.
First create a 2 dimensional manifold M and define a connection on the tangent space of M.
Define some vector fields and tensor fields and compute the directional covariant derivative with respect to C1.
Example 2.
Define a frame on M and use this frame to specify a connection C2 on the tangent space of M.
Define a vector field and a tensor field and compute the directional covariant derivative with respect to C2.
Example 3.
First create a rank 3 vector bundle E on M and define a connection C3 on E.
To covariantly differentiate a mixed tensor on E, a connection on M is also needed.
See Also
DifferentialGeometry, Tensor, Christoffel, Connection, CovariantDerivative, CurvatureTensor, DGinfo, GeodesicEquations, ParallelTransportEquations
Download Help Document