Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LieAlgebras[RootToCartanSubalgebraElementH] - associate to each positive root of a simple Lie algebra a vector in the Cartan subalgebra.
Calling Sequences
RootToCartanSubalgebraElementH()
Parameters
alpha - a vector, defining a positive (or negative) root of a simple Lie algebra
RSD - a table, defining the root space decomposition of a simple Lie algebra
Description
Let g be a simple Lie algebra, h a Cartan subalgebra, and the root space decomposition of g with respect to h. For each root , there are vectors and such that and These conditions uniquely determine The procedure RootToCartanSubalgebraElementH() calculates the vector
Note that the vectors define the 3-dimensional Lie algebra .
The assignment is used to calculate the Cartan matrix for the Lie algebra .
Examples
Example 1.
We consider the Lie algebra This is the 24-dimensional real Lie algebra of 6×6 complex matrices which are trace-free and skew-Hermitian with respect to the quadratic form . We use the command SimpleLieAlgebraData to initialize this Lie algebra.
We use the command SimpleLieAlgebraProperties to obtain the Cartan subalgebra, the root space decomposition, and the simple roots.
The result is a table. Here is the Cartan subalgebra for
Here is the root space decomposition for
Here are the positive roots.
Let us find where is the first root (2.4)
We check that is in the Cartan subalgebra.
Here are the root spaces for and
We check that defines a Lie subalgebra.
If we scale the vectors X and Y then the structure equations take the standard form for .
Example 2.
We illustrute how to use RootToCartanSubalgebraElementH to calculate the Cartan matrix for We first calculate the for the simple roots .
Then we calculate the Killing form , restricted to subspace [
The Cartan matrix is given by normalizing the entries of
The Lie algebra is a rank 5 simple Lie algebra of type "A". The matrix in (2.15) is therefore correct.
See Also
DifferentialGeometry, CartanMatrix, Killing, LieAlgebraData, RootSpace, SimpleLieAlgebraData, SimpleLieAlgebraProperties
Download Help Document