Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Query[Gradation] - check if a list of subspaces defines a gradation of a Lie algebra
Calling Sequences
Query([g0, g1, ..., gN], "Gradation")
Parameters
g0, g1, - a list of independent vectors defining subspaces of a Lie algebra g
Description
A collection of subspaces g0, g1, ... gN of a Lie algebra g defines a gradation of g if g = g0 + g1 + ... + gN (vector space direct sum) with [gi, gj] in g(i + j) for i + j <= N and [gi, gj] = 0 for i + j > N.
Query([g0, g1, g2, ... gN], "Gradation") returns true if the subspaces g0, g1, g2, ..., gN define a gradation of the Lie algebra g.
The command Query is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form Query(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Query(...).
Examples
Example 1.
The Lie algebra of 4 x 4 Upper triangular matrices is a 10 dimensional Lie algebra which is naturally graded - g0 consists of the matrices with only non-zero elements on the diagonal, g1 consists of the matrices with non-elements immediately above the diagonal (the super diagonal) and so on.
We use Query to verify this. First we use the program MatrixAlgebras to generate the Lie algebra data structure for the Lie algebra of upper triangular matrices. Here eij denotes the matrix with a 1 in the i-th row and j-th column.
To display the Lie algebra multiplication table, we need to increase the value of the interface parameter rtablesize.
Now define the 4 subspaces which will define our gradation.
See Also
DifferentialGeometry, LieAlgebras, MatrixAlgebras, MultiplicationTable, Query
Download Help Document