Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LieAlgebras[Derivations] - find the inner and/or Outer derivations of a Lie algebra
Calling Sequences
Derivations(Algname, "keyword")
Parameters
Algname - (optional) name or string, the name of a Lie algebra
keyword - one of the 3 keywords "Inner", "Full", or "Outer"
Description
A matrix A is a derivation for g if the associated linear transformation mapping g to g satisfies A([x, y]) = [A(x), y] + [x, A(y)] for all x, y in g. The set of all derivations defines a matrix Lie algebra Derivations(g). For each x in g the matrix A= ad(x) defines a derivation -- these are the inner derivations Derivations(g, "Inner"). The inner derivations define an ideal in Derivations(g) and the quotient Lie algebra Derivations(g)/Derivations(g, "Inner") is the Lie algebra of outer derivations.
Derivations(Algname, "Inner") returns a list of linearly independent matrices which defines a basis for the Lie algebra of inner derivations for the Lie algebra Algname.
Derivations(Algname, "Full") returns a list of linearly independent matrices which defines a basis for the Lie algebra of all derivations for the Lie algebra Algname.
Derivations(Algname, "Outer") returns a list of linearly independent matrices which gives a representative list of the outer derivations for the Lie algebra Algname.
If the first (optional) argument Algname is missing, then the derivations of the current Lie algebra are computed.
The command Derivations is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form Derivations(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Derivations(...).
Examples
Example 1.
First initialize a Lie algebra and display the Lie bracket multiplication table.
For the Lie algebra Alg1 we find that Derivations(Alg1, "Inner") is 4 dimensional and Derivations(Alg1) is 8 dimensional.
We can study the properties of Derivations(Alg1) by initializing these matrices as a Lie algebra. We use as a basis for Derivations(Alg1) the inner and outer derivations.
We see that the derivation algebra is solvable.
We check that the vectors [E1, E2, E3, E4] (corresponding to the inner derivations) define an ideal.
We compute the quotient algebra of outer derivations.
See Also
DifferentialGeometry, LieAlgebras, Adjoint, Query, Query[Derivation], Query[Ideal], Query[Solvable], QuotientAlgebra
Download Help Document