Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LieAlgebras[Adjoint] - find the ad Matrix for a vector in a Lie algebra
LieAlgebras[AdjointExp] - find the Ad Matrix for a vector in a Lie algebra
Calling Sequences
Adjoint(alg)
Adjoint(x, h, k)
AdjointExp(x)
Parameters
alg - (optional) the name of a Lie algebra g
x - a vector in a Lie algebra g
h - (optional) a list of vectors defining a basis for a subspace h in a Lie algebra g
k - (optional) a list of vectors defining a complementary basis in g to h
Description
Adjoint(x) is the linear transformation mapping g to g defined by Adjoint(x)(y) = [x, y] for all y in g. The linear transformation Adjoint(x) always defines a derivation on g.
The linear transformation AdjointExp(x) is the Lie algebra isomorphism defined by AdjointExp(x) = exp(Adjoint(x)) of the vector x in g.
Adjoint() returns the list of adjoint matrices for the basis vectors of the current algebra g.
Adjoint(alg) returns the list of adjoint matrices for the basis vectors of the algebra alg.
Adjoint(x, h) calculates the restriction of Adjoint(x) to the subspace h (h must be an Adjoint(x) invariant subspace).
Adjoint(x, h, k) calculates Adjoint(x) on the vector space quotient g/k with respect to the basis determined by h (k must be an Adjoint(x) invariant subspace).
The commands Adjoint and AdjointExp are part of the DifferentialGeometry:-LieAlgebras package. They can be used in the form Adjoint(...) and AdjointExp(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Adjoint(...) and DifferentialGeometry:-LieAlgebras:-AdjointExp(...).
Examples
Example 1.
First initialize a Lie algebra.
AdjointExp(t*e4) is given by the Matrix exponential of Adjoint(t*e4).
Calculate the restriction of Adjoint(e3) to the subspace defined by [e1, e2].
Calculate the linear transformation induced by Adjoint(e4 + 2*e3) on the quotient of [e1, e2, e3, e4] by the subspace defined by [e3, e4] with respect to the basis [e1, e2].
See Also
DifferentialGeometry, LieAlgebras, LinearAlgebra[MatrixExponential]
Download Help Document