Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
GroupActions[IsotropySubalgebra] - find the infinitesimal isotropy subalgebra of a Lie algebra of vector fields and the representation of the isotropy subalgebra on the tangent space
Calling Sequences
IsotropySubalgebra(Gamma, p, option)
Parameters
Gamma - a list of vector fields on a manifold M
p - a list of coordinate values [x1 = p1, x2 = p2, ...] specifying a point p in M
option - the optional argument output = O, where O is a list containing the keywords "Vector", "Representation", and/or the name of an initialized abstract algebra for the Lie algebra of vector fields Gamma.
Description
The isotropy subalgebra Gamma_p of a Lie algebra of vector fields Gamma at the point p is defined by Gamma_p = {X in Gamma | X_p = 0}. The Lie bracket defines a natural representation rho of Gamma_p on the tangent space T_pM by rho(X)(Y) = [X, Y], where X in Gamma_p and Y in T_pM.
IsotropySubalgebra returns a list of vectors giving the isotropy subalgebra Gamma_p as a subalgebra of Gamma.
With output = ["Vector", "Representation"], two lists are returned. The first is a list of vectors giving the isotropy subalgebra Gamma_p as a subalgebra of Gamma and the second is the list of matrices defining the linear isotropy representation with respect to the standard basis for T_pM.
Let algname be the name of the abstract Lie algebra g created from Gamma. With output = ["Vector", algname], the second list returned gives the isotropy subalgebra as a subalgebra of the abstract Lie algebra g.
The command IsotropySubalgebra is part of the DifferentialGeometry:-GroupActions package. It can be used in the form IsotropySubalgebra(...) only after executing the commands with(DifferentialGeometry) and with(GroupActions), but can always be used by executing DifferentialGeometry:-GroupActions:-IsotropySubalgebra(...).
Examples
Example 1.
We use the Retrieve command to obtain a Lie algebra of vector fields in the paper by Gonzalez-Lopez, Kamran, and Olver from the DifferentialGeometry Library. We compute the isotropy subalgebra and isotropy representation at the points [x = 0, y = 0] and [x = 1, y = 1].
We illustrate some different possible outputs from the IsotropySubalgebra program.
Note that the vectors in Iso2 all vanish at [x = 1, y =1]
It is apparent from the multiplication table that the pair [Alg1, S1] is a symmetric pair with respect to the complementary subspace T = [e1, e2]. Of course, we can check this with the command Query/"SymmetricPair".
The isotropy representation can be converted to a representation.
See Also
DifferentialGeometry, GroupActions, Library, LieAlgebras, LieAlgebraData, MultiplicationTable, Query, Representation, Retrieve
Download Help Document