Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DifferentialGeometry[DualBasis] - calculate the dual basis to a given basis of vectors or 1-forms
Calling Sequence
DualBasis(S, T)
Parameters
S
-
a list of independent vectors or 1-forms
T
(optional) a list of independent 1-forms if S is a list of vectors; a list of independent vectors if S is a list of 1-forms
Description
Let S = [X_1, X_2, ..., X_n] be a list of vectors, defined on a manifold M, which define a basis for the tangent space at a point p. Then the dual basis for the cotangent space at p is the list of 1-forms B = [alpha_1, alpha_2, ..., alpha_n] such that alpha_i(X_j) = delta_ij = {0 if i <> j and 1 if i = j}. The command DualBasis(S) will return the list of 1-forms B.
Let S = [alpha_1, alpha_2, ..., alpha_n] be a list of 1-forms, defined on a manifold M, which define a basis for the cotangent space at a point p. Then the dual basis for the tangent space at p is the list of vectors B = [X_1, X_2, ..., X_n] such that alpha_i(X_j) = delta_ij. The command DualBasis(S) will return the list of 1-forms B.
More generally, let S = [X_1, X_2, ..., X_k] be a list of independent vectors defined on a manifold M and let T = [theta_1, theta_2, ..., theta_k] be a list of independent 1-forms which are transverse to S in the sense that the k x k matrix A_ij = alpha_i(X_j) is non-singular. In this case DualBasis(S, T) returns a list of 1-forms B = [alpha_1, alpha_2, ..., alpha_k] such that span(B) = span(T) and alpha_i(X_j) = delta_ij.
This command is part of the DifferentialGeometry package, and so can be used in the form DualBasis(...) only after executing the command with(DifferentialGeometry). It can always be used in the long form DifferentialGeometry:-DualBasis.
Examples
Initialize a 3-dimensional manifold M with coordinates [x, y, z].
Example 1.
Example 2.
We check the answer by computing the interior products of S2[i] with B2[j].
Example 3.
The dual basis for the forms B2 from Example 2 are the vectors S2.
Example 4.
Calculate the dual basis to the vectors S3 relative to the subspace of 1-forms T3.
See Also
DifferentialGeometry, Annihilator, ComplementaryBasis, DGbasis, CanonicalBasis
Download Help Document