Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DifferentialGeometry[ComplementaryBasis] - extend a basis for a subspace to a basis for a larger subspace
Calling Sequence
ComplementaryBasis(S, T)
Parameters
S, T
-
lists of vectors, differential p-forms, or tensors (of the same type)
Description
The procedure ComplementaryBasis(S, T) returns a list C of vectors, differential p-forms or tensors such that the span of [S, C] equals the span of the vectors, differential p-forms or tensors defined by T.
This command is part of the DifferentialGeometry package, and so can be used in the form ComplementaryBasis(...) only after executing the command with(DifferentialGeometry). It can always be used in the long form DifferentialGeometry:-ComplementaryBasis.
Examples
Initialize a 5-dimensional manifold M with coordinates [x, y, z, u, v].
Example 1.
Example 2.
Note that a basis for S2 is [D_x, D_y] and a basis for T2 is [D_x, D_y, D_x + D_z, D_u].
Example 3.
In most applications the subspace spanned by the first argument S will be a subspace of the span of the second argument T. However, the procedure works in the more general context described above.
Example 4.
The command ComplementaryBasis works with differential forms.
Example 5.
The command ComplementaryBasis works with tensors.
See Also
DifferentialGeometry, Tools, CanonicalBasis, DGbasis, DualBasis
Download Help Document