Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DifferentialGeometry[Annihilator] - find the subspace of vectors (or 1-forms) whose interior product with a given list of 1-forms (or vectors) vanishes
Calling Sequence
Annihilator(S, T)
Parameters
S
-
a list of vectors or a list of 1-forms
T
(optional) a list of 1-forms if S is a list of vectors or a list of vectors if S is a list of 1-forms
Description
Let S be a list of 1-forms and T a list of vectors. Then Annihilator(S, T) calculates the subspace of vectors X in the span of T such that alpha(X) = 0 for all alpha in S.
Let S be a list of vectors and T a list of 1-forms. Then Annihilator(S, T) calculates the subspace of 1-forms alpha in the span of T such that alpha(X) = 0 for all X in S.
If the optional argument T is not given, then T is taken to be the standard basis for the tangent space or cotangent space for the manifold M on which the elements of S are defined.
This command is part of the DifferentialGeometry package, and so can be used in the form Annihilator(...) only after executing the command with(DifferentialGeometry). It can always be used in the long form DifferentialGeometry:-Annihilator.
Examples
Example 1.
Calculate the annihilator of the set of 1-forms S1 relative to subspaces T1, T2, and the full tangent space.
Example 2.
Calculate the annihilator of the set of vectors S2 and S3.
Let us check this result.
See Also
DifferentialGeometry, DualBasis, Hook
Download Help Document