Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
tensor[cov_diff] - covariant derivative of a tensor_type
Calling Sequence
cov_diff( U, coord, Cf2)
Parameters
U
-
tensor_type whose covariant derivative is to be computed
coord
list of names of the coordinate variables
Cf2
rank three tensor_type of character [1,-1,-1] representing the Christoffel symbols of the second kind
Description
Specifically,
Given the coordinate variables, coord, and the Christoffel symbols of the second kind, Cf2, and any tensor_type U, cov_diff( U, coord, Cf2 ) constructs the covariant derivative of U, which will be a new tensor_type of rank one higher than that of U.
The extra index due to the covariant derivative is of covariant character, as one would expect. Thus, the index_char field of the resultant tensor_type is .
Simplification: This routine uses the `tensor/cov_diff/simp` routine for simplification purposes. The simplification routine is applied to each component of result after it is computed. By default, `tensor/cov_diff/simp` is initialized to the `tensor/simp` routine. It is recommended that the `tensor/cov_diff/simp` routine be customized to suit the needs of the particular problem.
This function is part of the tensor package, and so can be used in the form cov_diff(..) only after performing the command with(tensor) or with(tensor, cov_diff). The function can always be accessed in the long form tensor[cov_diff](..).
Examples
Define the coordinate variables and the Schwarzchild covariant metric tensor:
Compute the Christoffel symbols of the second kind using the appropriate routines:
Now given a tensor, you can compute its covariant derivatives using cov_diff. First, compute the covariant derivatives of the metric. Expect to get zero.
Now compute the Riemann tensor and find its covariant derivatives:
Show the covariant derivative of the 1212 component with respect to x2:
See Also
Physics[Christoffel], Physics[D_], Physics[d_], Physics[Einstein], Physics[g_], Physics[LeviCivita], Physics[Ricci], Physics[Riemann], Physics[Weyl], tensor, tensor/partial_diff, tensor[Christoffel2], tensor[indexing], tensor[simp]
Download Help Document