Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
linalg[ismith] - integer-only Smith normal form
Calling Sequence
ismith(A)
ismith(A, U, V)
Parameters
A
-
rectangular matrix of integers
U
name
V
Description
Important: The linalg package has been deprecated. Use the superseding packages, LinearAlgebra and VectorCalculus, instead.
- For information on migrating linalg code to the new packages, see examples/LinearAlgebraMigration.
The function ismith computes the Smith normal form S of an n by m rectangular matrix of integers.
If two n by n matrices have the same Smith normal form, they are equivalent.
The Smith normal form is a diagonal matrix where
rank(A) = number of nonzero rows (columns) of S
sign(S[i,i]) = 1 for 0 < i <= rank(A)
S[i,i] divides S[i+1,i+1] for 0 < i < rank(A)
product(S[i,i],i=1..r) divides det(M) for all minors M of rank 0 < r <= rank(A)
Hence if n = m and rank(A) = n then .
The Smith normal form is obtained by doing elementary row and column operations. This includes interchanging rows (columns), multiplying through a row (column) by -1, and adding integral multiples of one row (column) to another.
Although the rank and determinant can be easily obtained from S this is not an efficient method for computing these quantities except that this may yield a partial factorization of without doing any explicit factorizations.
In the case of three arguments, the second argument U and the third argument V will be assigned the transformation matrices on output, such that smith(A) = U &* A &* V.
The command with(linalg,ismith) allows the use of the abbreviated form of this command.
Examples
See Also
linalg(deprecated)[ihermite], linalg(deprecated)[smith], LinearAlgebra, LinearAlgebra[SmithForm]
Download Help Document