Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
linalg[eigenvectors] - find the eigenvectors of a matrix
Calling Sequence
eigenvectors(A)
eigenvectors(A, 'radical')
eigenvectors(A, 'implicit')
Parameters
A
-
square matrix
Description
Important: The linalg package has been deprecated. Use the superseding packages, LinearAlgebra and VectorCalculus, instead.
- For information on migrating linalg code to the new packages, see examples/LinearAlgebraMigration.
The procedure eigenvectors computes the eigenvalues and eigenvectors of A. That is, for each eigenvalue lambda of A it solves the linear system for X.
The result returned is a sequence of lists of the form , where the are the eigenvalues, mi their algebraic multiplicities, is a set of basis vectors for the eigenspace corresponding to , and is the dimension of the eigenspace. The first example below shows how to extract the eigenvalues and their eigenvectors from the result.
Numeric Case: If the matrix A contains any floating-point (decimal) numbers, the eigenvectors are computed numerically. A standard numerical algorithm is used. All floating point arithmetic is done at Digits digits of precision. Note that the matrix entries on input must all be all of type numeric or complex(numeric).
Symbolic Case: Otherwise the eigenvalues and eigenvectors are computed symbolically (exactly). First the characteristic polynomial is computed and solved for its roots (the eigenvalues) lambda[i] symbolically. Then for each eigenvalue, a basis for its eigenspace is computed by computing the null space of the characteristic matrix .
Although eigenvalues and eigenvectors can in principle be computed for a matrix over any field F, one must be able to compute effectively with the roots of a univariate polynomial over F. For this reason, this routine is limited at present to the field of algebraic numbers or algebraic functions. Therefore, the input A must be a matrix of rationals, or polynomials, or a matrix of algebraic numbers or algebraic functions represented using Maple's RootOf or radical notation.
If the optional second argument is 'radical' is specified, Maple will try to express the eigenvalues and eigenvectors in terms of exact radicals. Note this may fail if any factor of the characteristic polynomial has degree 5 or higher. If the optional second argument is 'implicit' then Maple will express the eigenvalues in terms of an algebraic extension of any nonlinear factors of the characteristic polynomial using Maple's RootOf notation. This is always possible. If no optional second argument is specified, then Maple will use radicals as the default. The examples below will make these differences clear.
The command with(linalg,eigenvectors) allows the use of the abbreviated form of this command.
Examples
Here is a numerical example (A is a symmetric Toeplitz matrix)
Here is the same example done with exact arithmetic
By default the eigenvalues and eigenvectors are computed using radicals. To compute implicitly in terms of RootOf's, use the 'implicit' option
Here is an example of a symbolic matrix
The sqrt(2) in the following example makes the computation more difficult.
This final example shows a case where the algebraic multiplicity of the eigenvalue u is 4 but the dimension of the eigenspace is only 3.
See Also
linalg(deprecated)[charmat], linalg(deprecated)[eigenvalues], linalg(deprecated)[nullspace], linalg(deprecated)[vector], LinearAlgebra, RootOf
Download Help Document