Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
linalg[QRdecomp] - QR decomposition of a matrix
Calling Sequence
QRdecomp(A)
QRdecomp(A, arg2, arg3, ...)
QRdecomp(A, Q='q', rank='r', fullspan=value)
Parameters
A
-
rectangular matrix
arg.i
(optional) is of the form name=val
rank='r'
(optional) for returning the rank of A
Q='q'
(optional) for returning the Q factor of A
fullspan=value
(optional) include null span in Q
Description
Important: The linalg package has been deprecated. Use the superseding packages, LinearAlgebra and VectorCalculus, instead.
- For information on migrating linalg code to the new packages, see examples/LinearAlgebraMigration.
The routine QRdecomp computes the QR decomposition of the matrix A.
For matrices of floating-point entries, the numerically stable Householder-transformations are used. For symbolic computation, the Gram-Schmidt process is applied.
The result is an upper triangular matrix R. The orthonormal (unitary) factor Q is passed back to the Q parameter.
The default factorization is the full QR where R will have the same dimension as A. Q will be a full rank square matrix whose first n columns span the column space of A and whose last m-n columns span the null space of A.
If the (optional) fullspan arg is set to false, a Q1R1 factorization will be given where the Q1 factor will have the same dimension as A and, assuming A has full column rank, the columns of Q will span the column space of A. The R factor will be square and agree in dimension with Q. The default for fullspan is true.
If A is an n by n matrix then .
If A contains complex entries, the Q factor will be unitary.
The QR factorization can be used to generate a least squares solution to an overdetermined system of linear equations. If , and then can be solved through backsubstitution.
The command with(linalg,QRdecomp) allows the use of the abbreviated form of this command.
Examples
Warning, unable to find a provably non-zero pivot
See Also
linalg(deprecated)[backsub], linalg(deprecated)[GramSchmidt], linalg(deprecated)[leastsqrs], linalg(deprecated)[rank], LinearAlgebra
Download Help Document